(ghlush

HALF YEARLY EXAMINATION — 2013-14

Mathematics

Set-B

Time Allowed: 3 Hrs.

Class - IX

M.M.: 90

SNP

General Instructions:

- (i) All questions are compulsory.
- (ii) The question paper consists of 34 questions divided into four sections A, B, C and D. Section-A comprises of 8 questions of 1 mark each, Section-B comprises of 6 questions of 2 marks each, Section-C comprises of 10 questions of 3 marks each and Section-D comprises of 10 questions of 4 marks each.
- (iii) Question numbers 1 to 8 in Section-A are multiple choice questions where you are required to select one correct option out of the given four.
- (iv) Use of calculator is not permitted.

Section-A

Question numbers 1 to 8 carry 1 mark each. For each question four alternatives have been provided of which only 1 is correct. You have to select the correct choice.

1. Among the following, the rational number is :

(b) √98

(d) √14

2. If $p(x) = 5x^2 - 3x - 18$ then value of $p\left(\frac{-1}{2}\right)$ is:

5 + 3

5+6 : -

(a) -17

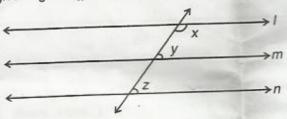
(b) $\frac{4}{16}$

(c) $\frac{61}{4}$

- $(d) \frac{-61}{4}$
- 3. Maximum number of zeroes in a cubic polynomial are :
 - (a) 0

(b) 1

(c) 2


∠(d) 3


- If a + b + c = 0, then $a^3 + b^3 + c^3$ is equal to:
 - (a) abc

(b) -3abc

(c) 0

- Yell 3abc
- In the given figure $I \parallel m$ and $m \parallel n$. If x : y = 3 : 2 then the value of z is : 5.

120° (a)

126° (b)

108° (c)

- 72° (d)
- In $\triangle ABC$, BC = AB. If $\angle B = 70^{\circ}$ then $\angle A$ is : 6.
 - 55° (a)

(b)

110° (c)

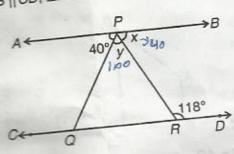
- (d) 45°
- The perpendicular distance of a point P(5, 3) from y-axis is:
 - 3 units (a)

(b) 8 units

2 5 units

- (d) 2 units
- A point both of whose co-ordinates are negative lies in the :
 - I Quadrant

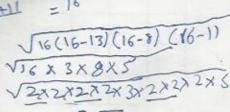
II Quadrant


(c) III Quadrant

IV Quadrant (d)

Section-B

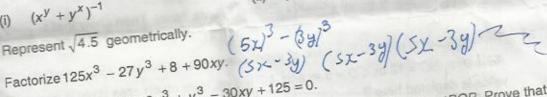
- Question numbers 9 to 14 carry 2 marks each.
- Represent 0.237 in the form $\frac{p}{q}$ where p and q are integers, $q \neq 0$. 9.
- 10. Expand $\left(3x \frac{1}{2}y + 2z\right)^2$.
- Give possible expression for the length and breadth of a rectangle whose area is given by $25a^2 - 35a + 12$
- 12. If A, B, C are three points on a line and B lies between A and C, then prove that AB + BC = AC. State the Euclid's Axiom/Postulate used to prove this.


In the given figure AB $||CD, \angle APQ = 40^{\circ}, \angle PRD = 118^{\circ}$. Find x and y.

Find the area of a triangle, two sides of which are 8 cm and 11 cm and the perimeter is 32 - (8+11)

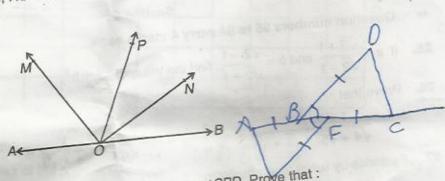
Section-C

= 13



8 520

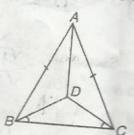
Question numbers 15-24 carry 3 marks each.


If x = 5 and y = 2, find the value of: (ii) $(x^x + y^y)^{-1}$

(i) $(x^y + y^x)^{-1}$ Represent $\sqrt{4.5}$ geometrically.

If 2x + y = -5, prove $8x^3 + y^3 - 30xy + 125 = 0$.

In the given figure, AOB is a line, OM bisects ∠AOP and ON bisects ∠BOP. Prove that **ZMON** = 90°.


In the given figure AB = CF, EF = BD, $\angle AFE = \angle CBD$. Prove that :

ΔAFE ≅ ΔCBD (i)

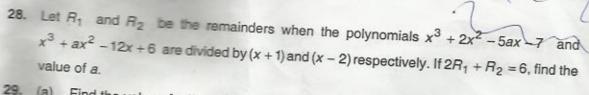
AB and CD are respectively the smallest and the longest sides of a quadrilateral ABC

22. In the given figure, AB = AC. D is the point in the interior of $\triangle ABC$ such that $\angle DBC = \angle DCB$. Prove that AD bisects $\angle BAC$ of $\triangle ABC$.

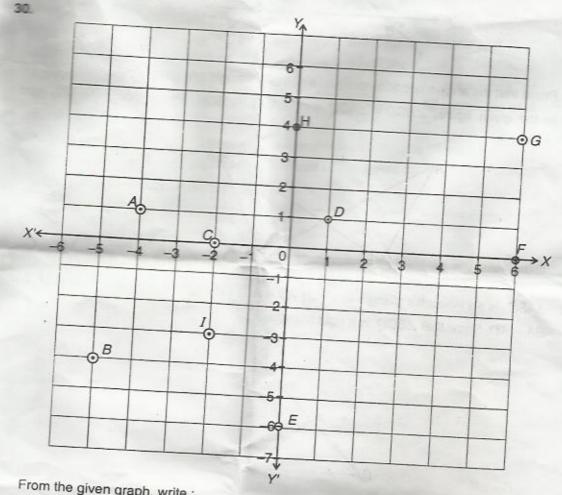
23. ABC is a triangle in which altitudes BE and CF are equal. Then show that :

(ii)
$$AB = A$$

24. Trees are being planted in a park, in the shape of a quadrilateral ABCD having $\angle C = 90^{\circ}$. (ii) AB = ACAB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy ? What

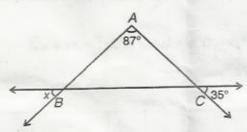

Section-D

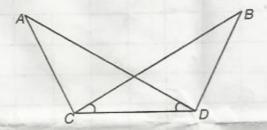
- Question numbers 25 to 34 carry 4 marks each.
- 25. $W = \frac{\sqrt{2}+1}{\sqrt{2}-1}$ and $b = \frac{\sqrt{2}-1}{\sqrt{2}+1}$, find the value of $a^2 + b^2$.
- 26. Prove that :


$$\frac{1}{\sqrt{4} + \sqrt{5}} + \frac{1}{\sqrt{5} + \sqrt{6}} + \frac{1}{\sqrt{6} + \sqrt{7}} + \frac{1}{\sqrt{7} + \sqrt{8}} + \frac{1}{\sqrt{8} + \sqrt{9}} = 1$$
Horise by using to

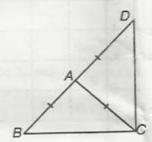
27. Factorise by using factor theorem :

$$x^3 + 13x^2 + 32x + 20$$
.


- 29. (a) Find the value of a if (x-1) is a factor of $2x^2 + ax + \sqrt{2}$.
 - (b) Factorize 64a³ 27b³.


From the given graph, write:

- The co-ordinates of the point B and F.
- The abscissa of the points D and H. (ii)
- (iii) The ordinate of the points A and C.
- (iv) The perpendicular distance of the point G from the x-axis.


31. If two lines intersect each other, then vertically opposite angles so formed are equal. Prove it. Using above, find the value of x in the given figure :

- 32. Prove that the angles opposite to equal sides of a triangle are equal.
- 33. In the given figure, $\angle BCD = \angle ADC$ and $\angle ACB = \angle BDA$. Prove that AD = BC and $\angle A = \angle B$.

34. $\triangle ABC$ is an isosceles triangle in which AB = AC. Side BA is produced to D such that BA = AD. Show that $\angle BCD$ is a right triangle.

